CHEMICAL ENGINEERING

- Chemical Engineering, MS (https://bulletin.uakron.edu/graduate/colleges-programs/engineering/chemical-engineering/chemical-engineering-ms)

Chemical Engineering (4200)

4200:521 Fundamentals of Multiphase Transport Phenomena (3 Credits)
Prerequisite: 4200:321 or equivalent and permission. Major topics to be covered include intraphase and interphase transport phenomena, transport phenomena in multiphase fluids, transport in porous media, transport in gas/liquid pipe flows, computational fluid dynamics of multiphase systems, and case studies.

4200:535 Process Analysis & Control (3 Credits)

4200:541 Process Design I (3 Credits)

4200:561 Solids Processing (3 Credits)
Prerequisites: 4200:321 and 4200:353 or permission. Comprehensive problems in sedimentation, fluidization, drying and other operations involving mechanics of particulate solids in liquid and gas continua.

4200:563 Pollution Control (3 Credits)
Prerequisite: 4200:353 or permission. Air and water pollution sources and problems. Engineering aspects and methodology.

4200:566 Digitized Data & Simulation (3 Credits)
Prerequisite: permission. Data acquisition and analysis by digital devices, digital control applications and design.

4200:570 Electrochemical Engineering (3 Credits)
Chemical engineering principles as applied to the study of electrode processes and to the design of electrochemical reactors. Topics include electrochemical thermodynamics, cell polarizations, Faraday’s Laws, electrode kinetics, transport processes in electrochemical systems, current distributions, reactor design, experimental methods, commercial processes, and batteries and fuel cells.

4200:572 Separation Processes in Biochemical Engineering (3 Credits)
Prerequisite: 4200:353. Introduction to the separation and purification techniques pertinent to bioprocesses, with emphasis on the engineering considerations for large-scale operations.

4200:600 Transport Phenomena (3 Credits)
Prerequisite: 4200:322 or permission. Systematic presentation of conservation of momentum, energy and mass at microscopic and macroscopic levels in conjunction with illustrative examples and analogies.

4200:605 Chemical Reaction Engineering (3 Credits)
Prerequisite: 4200:330 or permission. Kinetics of homogeneous and heterogeneous systems. Reactor design for ideal and non-ideal flow systems.

4200:610 Classical Thermodynamics (3 Credits)

4200:621 Surface Science in Chemical Engineering (3 Credits)
Prerequisite: permission of instructor. This course emphasizes the basics of surface science (surface energy, wetting, adhesion); surface characterization techniques (contact angle, ellipsometry, XPS); and surface engineering methods (SAMs, soft-lithography).

4200:622 Biochemical Engineering (3 Credits)
Application of chemical engineering principles to biological processes which produce desirable compounds or destroy unwanted or hazardous substances.

4200:625 Physical Properties of Structural Biopolymers (3 Credits)
Prerequisite: permission of instructor. Examination of the physical properties of biological tissues from a material science perspective leading to a rational design of biomaterials.

4200:630 Chemical Process Dynamics (3 Credits)
Prerequisite: 4200:600. Development and solutions of mathematical models for chemical processes including models based on transport phenomena principles, population balance methods and systems analysis.

4200:631 Chemical Engineering Analysis (3 Credits)
Prerequisites: 4200:322, 4200:225, 4200:330. Mathematical analysis of problems in transport processes, chemical kinetics and control systems. Solution techniques for these problems and their practical significances are stressed. Heuristic proofs will be given for necessary theory developments.

4200:632 Nonlinear Dynamics & Chaos (3 Credits)
Prerequisite: 3450:235. Description and analysis of the complex behavior exhibited by nonlinear equations. Emphasis is on the numerical methods to quantify chaos.

4200:633 Colloids-Principles & Practice (3 Credits)
Prerequisite: permission of instructor. Colloid science and applications in chemical and biomaterials engineering: disperse systems, interparticle forces, surface tension, interfacial thermodynamics, colloid applications, biomaterials applications and characterization techniques.

4200:634 Applied Surfactant Science (3 Credits)
Prerequisite: 4200:610. The basics of surfactant science, the chemical engineering application of surfactants including use in polymerization media, separations, emulsion, microemulsion, and a rheology modifier.

4200:635 Advanced Polymer Engineering (3 Credits)
Prerequisite: 4200:322 or 4200:600 or permission. Reactors for polymerization, polymer characterization, polymer processing, polymer rheology.

4200:640 Advanced Plant Design (3 Credits)
Prerequisite: permission. Topical treatment of process and equipment design, scale-up, optimization, process syntheses, process economics. Case problems.

4200:674 Renewable Resources for Environmentally Benign Chemical Production (3 Credits)
Prerequisite: permission of instructor. Focus is on chemical and biochemical processing technologies for the preparation of fuels, polymeric materials, and specialty chemicals from renewable resources.

4200:680 Heterogenous Catalysis (3 Credits)
Prerequisite: 4200:330. Kinetics and mechanisms of heterogeneous and homogeneous catalytic reactions; characterization and design of heterogeneous catalysts.
4200:696 Topics in Chemical Engineering (1-3 Credits)
(May be repeated for a total of six credits.) Prerequisite: permission.
Topics selected from new and developing areas of chemical engineering,
such as electrochemical engineering, coal and synthetic fuels processing,
bioengineering, simultaneous heat and mass transfer phenomena and
new separation techniques.

4200:697 Chemical Engineering Report (3 Credits)
Prerequisite: permission of advisor. A relevant problem in chemical
engineering is studied. Required course for students electing non-thesis
option. Final report must be approved by advisor and advisory committee.

4200:699 Master's Thesis (1-6 Credits)
(May be repeated to a maximum of six credits.) For properly qualified
candidate for master's degree. Supervised original research in specific
area of chemical engineering selected on basis of availability of staff and
facilities.

4200:701 Advanced Transport Phenomena (3 Credits)
Prerequisite: 4200:600. Advanced theory of transport phenomena such as
applied tensor analysis, constitutive equations, multicomponent reactive
transport and multiphase transport. Illustrative practical examples
presented.

4200:702 Multiphase Transport Phenomena (3 Credits)
Prerequisite: 4200:600. General transport theorem, kinematics, Cauchy's
lemmas and the jump boundary conditions are developed followed by the
theory of volume averaging. The single phase equations are then volume
averaged to obtain the multiphase equations of change. The technique
for using these equations and their practical significance is also covered.

4200:706 Advanced Reaction Engineering (3 Credits)
Prerequisite: 4200:605. Kinetics of heterogeneous systems, steady and
unsteady state mathematical modeling of chemical reactors, fluidization
and additional topics drawn from current literature.

4200:711 Advanced Chemical Engineering Thermodynamics (3 Credits)
Prerequisite: 4200:610. Advanced topics in thermodynamics, including
phase and reaction equilibria at high pressures, phase equilibrium
for multiphase systems, reaction equilibria in multiphase systems,
thermodynamics of surfaces, thermodynamics of systems under stress,
non-equilibrium thermodynamics and current topics from literature.

4200:715 Momentum Transport (3 Credits)
Prerequisite: 4200:600. Discussion of potential flow, boundary layer
formation and turbulent flow phenomena for Newtonian fluids.

4200:716 Non-Newtonian Fluid Mechanics (3 Credits)
Prerequisite: 4200:600. Tensor and curvilinear coordinates. Newtonian
Special and general flows of various constitutive models.

4200:720 Energy Transport (3 Credits)
Prerequisite: 4200:600. Conduction, natural and forced convection, and
radiation heat transfer starting with equations of continuity, motion and
energy.

4200:721 Topics in Energy Transport (3 Credits)
Prerequisite: 4200:720. Advanced analytical and graphical methods for
solving complex heat transfer problems found in chemical engineering.

4200:725 Mass Transfer (3 Credits)
Prerequisite: 4200:600. Theory of mass transfer with applications to
absorption, adsorption, distillation and heterogeneous catalysis.

4200:731 Process Control (3 Credits)
Prerequisite: 4200:630. Introduction to modern control theory of chemical
processes including cascade control, multivariate control and data
sampled control.