POLYMER ENGINEERING (9841)

9841:525. Introduction to Blending and Compounding of Polymers. (3 Credits)
Prerequisite: Permission of instructor. Nature of polymer blends and compounds and their applications. Preparation and technology using batch and continuous mixers. Mixing Mechanisms.

9841:527. Mold Design. (3 Credits)
Prerequisite: permission of instructor. Molding methods to manufacture polymeric products. Machinery, materials, molds, equipment, computer-aided design.

9841:550. Engineering Properties of Polymers. (3 Credits)
Prerequisite: permission of instructor. Introduction to engineering properties and polymer processing. Analyzing mechanical polymer tests in glassy, rubbery, and fluid states. Product design, rheology, rheometry, and polymer processing concepts.

9841:551. Polymer Engineering Laboratory. (3 Credits)
Prerequisite: permission of instructor. Laboratory experiments on the rheological characterization of polymer melts, fabrication of engineering products, structural investigation of polymeric parts.

9841:600. Interfacial Phenomena in Soft Matter. (3 Credits)
This course covers intermolecular interactions, (de)wetting, adsorption, adhesion and friction, colloidal stability, nucleation, and assembly process.

9841:601. Seminar in Polymer Engineering. (1 Credit)
Presentations of recent research on topics in polymer engineering by internal and external speakers.

9841:611. Fundamentals of Polymer Structure Characterization. (3 Credits)

9841:621. Rheology of Polymer Fluids. (3 Credits)

9841:622. Analysis & Design of Polymer Processing Operations I. (3 Credits)
Prerequisite: 9841:621. Mathematical modeling and engineering design analysis of polymer processing operations including extruder screws, injection molds, dies, fibers, film formation.

9841:623. Analysis & Design of Polymer Processing Operations II. (3 Credits)
Prerequisite: permission of instructor. Basic studies on non-isothermal phenomena in polymer engineering emphasizing crystallization, vitrification, frozen-in orientation and residual stresses, applications, including fiber spinning and film extrusion.

9841:631. Engineering Properties of Solid Polymers. (2 Credits)
Transitions as a function of polymer structure, optical characteristics, mechanical including ultimate properties, viscoelastic behavior of elastomers and plastics, large strain behavior. E emphasis on experimental methods.

9841:641. Polymer Chem & Thermodynamics. (3 Credits)
Physioco-chemical properties of amorphous and crystalline polymers. Glass transitions, crystallization, molecular orientation and morphology of important commercial polymers, fabricated products and composite materials.

9841:650. Introduction to Polymer Engineering. (3 Credits)
Basic concepts of polymer engineering taught in lecture-laboratory format intended for orientation of new graduate students.

9841:651. Polymer Engineering Laboratory. (3 Credits)
Prerequisite: 9841:622. Rheological characterization of polymer melts, rubber and plastic extrusion, extrudate swell, injection and compression molding, crystallization behavior, x-ray diffraction, film blowing, impact and tensile testing.

9841:661. Polymerization Reactor Engineering. (3 Credits)
Polymerization kinetics, classical reactor design, comparison of polymerization in batch and continuous stirred tank reactors, flow patterns around agitators, tubular reactors, reactor stability.

9841:666. Research Methods. (3 Credits)
This course will focus on providing guidance to beginning graduate students on general concepts that are typically encountered in research including: 1. Scientific method; 2. Ethics in research; 3. Scientific paper writing; 4 Scientific presentations.

9841:675. Carbon-Polymer Nanotechnology. (3 Credits)
Prerequisite: permission of instructor. This course focuses on the fundamental aspects of nanotechnology in general and basic knowledge of polymer/carbon nanoscience and nanotechnology in particular.

9841:680. Polymer Coatings. (3 Credits)
Prerequisite: permission of instructor. This course is an introduction to coating science. The synthesis of polymeric binders and pigments used in commodity coatings will be the focus of the first part of the course. The second part of the course will focus on coatings formulation and end-use applications for commodity coatings.

9841:699. Masters Thesis. (1-6 Credits)
(May be repeated) Supervised original research in specific area of polymer engineering.

9841:712. Rheo-Optics of Polymers. (2 Credits)
Applications of rheo-optical methods as means of determining stress fields in polymeric glasses and fluids during deformation, rheo-optical properties of polymers in glassy, rubbery and fluid states. Theory of dynamic birefringence and its application to mechanical relaxations of amorphous and semi-crystalline polymers, and recent experimental results.

9841:715. Advanced Characterization of Functional Polymers. (3 Credits)
Prerequisites: 9841:611 and 9841:623 or equivalent (with permission of instructor). This course will focus on the advanced structural and functional property characterization techniques including optical, electrical, magnetic and others. A particular focus will be the influence of the history of polymer processing on these properties.

9841:720. Molecular Aspects of Polymer Rheology. (2 Credits)
Prerequisite: 9841:621. Molecular theory for concentrated solutions and melts of flexible homopolymers, molecular rheology of miscible polymer blends, block copolymers, and liquid crystalline polymers.
9841:721. Rheology & Processing Two-Phase Polymer Systems. (2 Credits)
Prerequisite: 9841:622 or equivalent. Particle-particle interactions, mixing
devices and design, theoretical hydrodynamics of suspensions of rigid
particles, experimental studies of rheological behavior, phenomenological
theories representing suspension behavior, dispersion of droplets to form
an emulsion, phase morphology development and rheological properties
of blends.

9841:722. Advanced Modelling of Polymer Processing. (2 Credits)
Prerequisite: permission of instructor. Modeling of processing operations
including extrusion molding, fiber and film processing, computer-aided
design.

9841:723. Rheology & Processing of Elastomers. (2 Credits)
Interpretation of rheological properties and critical study and analysis
of processing operations including behavior in internal mixers, screw
extruders, die systems and vulcanization molding.

9841:724. Advanced Extrusion & Compounding. (2 Credits)
Principles of operation and flow in single and twin screw extruders, screw
design, characteristics of internal mixers, analysis and simulation of flow.

9841:725. Chemorheology & Processing of Thermosets. (2 Credits)
Prerequisite: 9841:621 or 9841:622. Rheological behavior of thermosets,
vulcanization of rubbers, time-temperature-transition relationships in
thermosets, reaction injection molding, compression/transfer molding,
pultrusion.

9841:727. Advanced Polymer Rheology. (2 Credits)
Prerequisite: 9841:621 or equivalent. Second level course in non-linear
constitutive equation for viscoelastic, viscoplastic, viscoelastic-plastic
polymeric materials. Utility and applicability to polymer processing
problems.

9841:728. Numerical Methods in Polymer Engineering. (3 Credits)
Prerequisites: 9841:621, 9841:622, 9841:623, and 9841:631. Basics of
generally accepted numerical methods. Numerical problems in polymer
solid mechanics and technological applications. Numerical problems in
polymer fluid mechanics and polymer processing. Commercial softwares.

9841:731. Stress Anlysis of Polymers & Composites. (2 Credits)
Prerequisite: 9841:631. The design of rubber mounts, bearings and
sandwich components with demonstration of finite element methods.
Classical plates and shells theories with applications to composite
structures.

9841:745. Liquid Crystals. (2 Credits)
Prerequisite: permission of instructor. Structure of low molecular weight
and polymeric liquid crystals, characterization, physical properties
including optical properties, phase transitions, structure-property
relationships, processing of polymeric species.

9841:747. Polymer Colloids. (3 Credits)
Prerequisite: permission of instructor. Colloidal dispersions, phase
stability, aggregation structures, thermodynamics, kinetics of phase
transitions in polymer colloids. Emulsion and solution polymerization,
organic/inorganic hybrid materials, coating technology. Rheology of
colloidal polymers.

9841:749. Phase Transitions in Polymer Blends and Alloys. (3 Credits)
Prerequisite: permission of instructor. Elucidating thermodynamics of
polymer blends, block copolymers, crystalline/liquid crystalline polymers,
and kinetics of phase transitions. Structure development and modeling of
reactive polymer blends.