CHEMICAL, BIOMOLECULAR, AND CORROSION ENGINEERING

The Department of Chemical, Biomolecular, and Corrosion Engineering (https://www.uakron.edu/engineering/CBE/) offers undergraduate programs in leading to the Bachelor of Science in Chemical Engineering and the Bachelor of Science in Corrosion Engineering. Chemical engineering undergraduates may earn a polymer engineering specialization certificate or a biotechnology certificate. The department also offers an Associate of Applied Science in Corrosion Engineering Technology and a certificate in corrosion technology. The department offers graduate programs leading to a Master of Science in Chemical Engineering, and an interdisciplinary Doctor of Philosophy in Engineering.

Mission: The goal of the Chemical, Biomolecular, and Corrosion Engineering Department is to prepare graduates with the necessary skills so that they can contribute to a highly technical global society through their professional careers. The philosophy of the Chemical, Biomolecular, and Corrosion Engineering faculty is to provide a strong theoretical foundation supported by practical applications of that knowledge, which is consistent with the mission of The University of Akron.

The Chemical, Biomolecular, and Corrosion Engineering Department provides a unique opportunity to master teamwork and design project management skills. Teams of freshmen through senior Chemical and Corrosion Engineering undergraduates work on a realistic engineering design project. Besides experience with a range of current engineering topics, the projects allow students to develop teamwork, communication, presentation, project management and information technology skills.

The department offers B.S. Chemical Engineering students at The University of Akron a five year BS/MS program in Chemical Engineering. Applications are accepted in the Spring of the junior year. More information can be found in the Graduate Bulletin (https://bulletin.uakron.edu/graduate/cbe/chemical-engineering/chemical-engineering-masters/#requirementtext).

Information specific to the available program options in chemical engineering and corrosion engineering is available:

- Biotechnology Specialization, Certificate (https://bulletin.uakron.edu/undergraduate/colleges-programs/engineering-polymer-science/chemical-biomolecular-corrosion-engineering/biotechnology-specialization-certificate/)
- Chemical Engineering, BS (https://bulletin.uakron.edu/undergraduate/colleges-programs/engineering-polymer-science/chemical-biomolecular-corrosion-engineering/chemical-engineering-bs/)
- Chemical Engineering, Co-op Option, BS (https://bulletin.uakron.edu/undergraduate/colleges-programs/engineering-polymer-science/chemical-biomolecular-corrosion-engineering/chemical-engineering-co-op-bs/)
- Chemical Engineering/Polymer Engineering, Certificate (https://bulletin.uakron.edu/undergraduate/colleges-programs/engineering-polymer-science/chemical-biomolecular-corrosion-engineering/chemical-engineering-polymer-science/certificate/)
- Corrosion Engineering, BS (https://bulletin.uakron.edu/undergraduate/colleges-programs/engineering-polymer-science/chemical-biomolecular-corrosion-engineering/corrosion-engineering-bs/)
- Corrosion Engineering, Co-op Option, BS (https://bulletin.uakron.edu/undergraduate/colleges-programs/engineering-polymer-science/chemical-biomolecular-corrosion-engineering/corrosion-engineering-co-op-bs/)

Information specific to the available program options in corrosion engineering technology is available:

Corrosion Engineering Technology (2850)

2850:120 Corrosion Engineering Technology Fundamentals I (3 Credits)
Corequisite: 2820:111. Introduction to corrosion engineering topics including economic impacts of corrosion, types of corrosion, their recognition and prevention, parameters affecting corrosion, and methods of corrosion control.

2850:121 Corrosion Engineering Technology Fundamentals II (4 Credits)
Prerequisite: 2850:120. Basic understanding of steps and methods required for combating corrosion including proper design, material selection, protective coating application, inhibitors use, and cathodic and anodic protection.

2850:220 Strategies for Corrosion Prevention (4 Credits)
Prerequisite: 2850:121. Corequisite: 3650:163. This course focuses on the control of corrosion by applying coatings and cathodic protection.

2850:221 Corrosion Engineering Technology Projects (4 Credits)
Prerequisite: 2850:220. Course focuses on corrosion/failure analysis and corrosion mitigation, and discussion of regulatory compliance and resource acquisition and allocation.

Chemical Engineering (4200)

4200:101 Tools for Chemical Engineering (2 Credits)
Corequisites: 4200:110 and 3450:149. Introduction to Chemical Engineering. Basic concepts of engineering practice. Introduction to professional level software including process simulation, control design, spreadsheets, mathematical computation, and process flow graphics.

4200:110 Project Management and Teamwork I (1 Credit)
Teams freshmen through senior Chemical Engineering and Corrosion Engineering undergraduates on a design team working on a realistic chemical engineering problem. Develops teamwork, communications, presentation, project management and information technology skills.

4200:121 Chemical Engineering Computations (2 Credits)
Prerequisites: 4200:101 or 4200:102. Computer programming language, flowcharting, introductory simulation and introductory numerical analysis.

4200:194 Chemical Engineering Design I (1 Credit)
Prerequisites: 4200:101 and permission. Individual or group project under faculty supervision. Introduction to chemical engineering processes and modern design technology. Written report is required.
4200:200 Material & Energy Balances (4 Credits)
Prerequisites: [4200:121 or 4250:106], 3150:151 and 3450:221.
Introduction to material and energy balance calculations applied to
solution of chemical engineering problems.

4200:210 Project Management and Teamwork II (1 Credit)
Prerequisite: 4200:110. Teams freshmen through senior Chemical
Engineering and Corrosion Engineering undergraduates on a design
team working on a realistic engineering problem. Develops teamwork,
communications, presentation, project management and information
technology skills.

4200:220 Introduction to Thermodynamic Processes (3 Credits)
Prerequisites: 3450:223 and [4200:200 or 4250:200]. First and Second
Laws of Thermodynamics, work, entropy, heat engines and refrigeration
cycles, equations of state, departure functions and reaction equilibria.

4200:225 Equilibrium Thermodynamics (4 Credits)
Prerequisites: 4200:200 or 4250:200 and 3450:223. Second law of
thermodynamics, entropy, applications, comprehensive treatment of pure
and mixed fluids. Phase and chemical equilibrium, flow processes, power
production and refrigeration processes covered.

4200:294 Chemical Engineering Design II (1-2 Credits)
Prerequisites: 4200:121, 4200:200 and permission. Supervised individual
or group design project. Analysis of multi-unit process using simulation
and/or experimental techniques. Written report and oral presentation
required.

4200:305 Materials Science (2 Credits)
Prerequisites: 3150:153. Corequisite: 3650:292. Structure, processing
and properties of metals, ceramics and polymers. Special topics, such as
composites, corrosion and wear.

4200:308 Introduction to Bio-based Polymers (3 Credits)
Prerequisites: 3150:263 and junior or greater standing. This course
introduces basic concepts of polymer science: building blocks, structure,
elementary reactions and polymerization mechanisms, through seven
natural polymers.

4200:310 Project Management and Teamwork III (1 Credit)
Prerequisites: 4200:210 and admission to an engineering major within
the College of Engineering and Polymer Science. Corequisite: 4250:300
or 4250:353. Teams freshmen through senior Chemical Engineering
and Corrosion Engineering undergraduates on a design team working
on a realistic chemical engineering problem. Develops teamwork,
communications, presentation, project management and information
technology skills.

4200:320 Phase Equilibrium Thermodynamics (3 Credits)
Prerequisites: 4200:220 and admission to an engineering major within
the College of Engineering and Polymer Science. Thermodynamics of
mixtures, excess properties, activity coefficients, mixture fugacity, mixture
phase equilibrium and thermodynamic consistency.

4200:321 Transport Phenomena (3 Credits)
Prerequisites: [4200:200 or 4250:200], 3450:335 and admission to
an engineering major within the College of Engineering and Polymer
Science Constitutive equations for momentum, energy and mass transfer.
development of microscopic and macroscopic momentum, energy and
mass transfer equations for binary systems. Analysis of dimensionless
problems and applications in unit operations of chemical
engineering.

4200:330 Chemical Reaction Engineering (3 Credits)
Prerequisites: 3450:335, 4200:225 and admission to an engineering major
within the College of Engineering and Polymer Science. Nonequilibrium
processes including chemical reaction mechanisms, rate equations
and ideal reactor design applied to homogeneous and heterogeneous
systems.

4200:341 Process Economics (2 Credits)
Prerequisites: [4200:200 or 4250:200] and admission to an engineering
major within the College of Engineering and Polymer Science. Theory
and application of engineering economy to multi-unit processes. Cost
estimation, time value of money, profit analysis, decision making and
introduction to project management.

4200:351 Fluid & Thermal Operations (3 Credits)
Prerequisite: 4200:321 and admission to the College of Engineering.
Applications of fluid mechanics including piping, pumping, compression,
metering, agitation and separations. Applications of heat transfer by
conduction, convection and radiation to design of process equipment.

4200:353 Mass Transfer Operations (3 Credits)
Prerequisites: 4200:225 and [C- or above in 4200:200 or 4250:200] and
admission to an engineering major within the College of Engineering
and Polymer Science. Theory and design of staged operations including
distillation, extraction, absorption. Theory and design of continuous mass
transfer devices.

4200:360 Chemical Engineering Laboratory (3 Credits)
Prerequisites: 4200:353; corequisites: 4200:330, 4200:351.
Comprehensive experiments in combined heat and mass transfer,
thermodynamics, and reaction kinetics. Data collection and analysis.
Comprehensive reports in various formats.

4200:394 Chemical Engineering Design III (1-3 Credits)
Prerequisites: 4200:351 and permission. Supervised individual or group
design project. Develop, evaluate and design feasible solutions to an
open-ended problem pertinent to chemical engineering. Written report
and oral presentation required.

4200:408 Polymer Engineering (3 Credits)
Prerequisite: Senior standing or higher or permission. Commercial
polymerization, materials selection and property modification, polymer
processing, applied rheology and classification of polymer industry.

4200:410 Project Management and Teamwork IV (1 Credit)
Prerequisites: 4200:310 and admission to an engineering major within
the College of Engineering and Polymer Science. Corequisites: 4200:441
or 4250:440. Teams freshmen through senior Chemical Engineering
and Corrosion Engineering undergraduates on a design team working
on a realistic chemical engineering problem. Develops teamwork,
communications, presentation, project management and information
technology skills.

4200:421 Fundamentals of Multiphase Transport Phenomena (3 Credits)
Prerequisite: 4200:321 or equivalent, and instructor permission. Major
topics to be covered: Intraphase and interphase transport phenomena,
Transport phenomena in multiphase fluids, Transport in Porous Media,
Transport in Gas/liquid pipe flows, Computational Fluid Dynamics of
multiphase systems, and Case studies.

4200:435 Process Analysis & Control (3 Credits)
Prerequisites: 4200:330, 4200:353 and admission to an engineering major
within the College of Engineering and Polymer Science. Response of
simple chemical processes and design of appropriate control systems.
4200:438 Energy Integration (3 Credits)
Prerequisite: 4200:351. This course uses Pinch Design formalism to present the core energy integration tools for energy and area targeting, and tools for integration of reactors, distillation columns, and heat pumps.

4200:441 Process Design I (3 Credits)
Prerequisites: 4200:330, 4200:341, 4200:351, 4200:353 and admission to an engineering major within the College of Engineering and Polymer Science. Application of chemical engineering fundamentals to the design of a multi-unit process. Emphasis on use of process simulators. Advanced equipment design, oral and written communication skills and teamwork.

4200:442 Process Design II (3 Credits)
Prerequisites: 4200:441 and admission to an engineering major within the College of Engineering and Polymer Science. Teaches methods of process conceptualization, preliminary optimization. Specific topics include: chemical process design methodology, design heuristics, energy integration, and process safety review.

4200:450 Chemical Product Design and Development (3 Credits)
Prerequisite: Senior standing or permission. Introduction to the strategies and processes used to design and develop new chemical products from the idea stage through manufacturing.

4200:461 Solids Processing (3 Credits)
Prerequisites: 4200:321 and 4200:353 or permission. Comprehensive problems in sedimentation, fluidization, drying and other operations involving mechanics of particulate solids in liquid and gas continua.

4200:462 Industrial Enzyme Technology (3 Credits)
Prerequisites: 4200:330 and 4200:351. Application of chemical engineering to biological processes involving enzymes and their industrial applications. Special emphasis given to the kinetics, control, design, and process economics aspects.

4200:463 Pollution Control (3 Credits)
Prerequisite: 4200:353 or permission. Air and water pollution sources and problems. Engineering aspects and methodology.

4200:466 Digitized Data & Simulation (3 Credits)
Prerequisite: Permission. Data acquisition and analysis by digital devices, digital control applications and design.

4200:470 Electrochemical Engineering (3 Credits)
Prerequisites: 4200:321, 4200:330. Chemical engineering principles as applied to the study of electrode processes and to the design of electrochemical reactors. Topics include electrochemical thermodynamics, cell polarizations, Faraday’s Laws, electrode kinetics, transport processes in electrochemical systems, current distributions, reactor design, experimental methods, commercial processes, and batteries and fuel cells.

4200:471 Fuel Engineering (3 Credits)
Prerequisite: 4200:330 or permission of instructor. Topics related to clean liquid and solid fuels technology. Special emphasis given to design, system analysis, environmental impacts, and novel technologies.

4200:472 Separation Processes in Biochemical Engineering (3 Credits)
Introduction to the separation and purification techniques pertinent to bioprocesses, with emphasis on engineering considerations for large scale operations.

4200:473 Bioreactor Design (3 Credits)
Prerequisite: 4200:330 or instructor’s consent. Design, analysis, and scale-up of bioreactors for various biological processes.

4200:488 Chemical Processes Design (3 Credits)
Prerequisite: Permission of instructor or senior standing. Process design and analysis of emerging chemical technologies. Case studies, such as in-situ processing, alternative fuels, bioremediation, and engineering materials manufacture.

4200:494 Design Project (3 Credits)
Prerequisite: Permission or senior standing. Individual design project pertinent to chemical engineering under faculty supervision. Written report and oral presentation required.

4200:496 Topics in Chemical Engineering (1-3 Credits)
(May be repeated for a total of six credits) Prerequisite: Permission. Topics selected from new and developing areas of chemical engineering, such as electrochemical engineering, coal and synthetic fuels processing, bioengineering, simultaneous heat and mass transfer phenomena and new separation techniques.

4200:497 Honors Project (1-3 Credits)
(May be repeated for a total of six credits) Prerequisite: Permission. Individual creative project pertinent to chemical engineering culminating in undergraduate thesis, supervised by faculty member of the department.

4200:499 Research Project: Chemical Engineering (1-3 Credits)
(May be repeated for a total of six credits) Prerequisite: Permission. Individual research project pertinent to chemical engineering under faculty supervision. Report required.

Corrosion Engineering (4250)

4250:101 Tools for Corrosion Engineering (2 Credits)
Corequisites: 3450:149 and 4200:110. Introduction to corrosion engineering. Basic concepts of engineering practice. Introduction to professional level software needed for later studies.

4250:105 Corrosion Engineering Computations (2 Credits)

4250:194 Design Project 1 (1 Credit)
Prerequisite: Permission. Individual design project in Corrosion Engineering that is supervised by a faculty member.

4250:200 Material and Energy Balances for Corrosion Engineers (4 Credits)
Prerequisites: [4200:121 or 4250:105], 3150:151 and 3450:221. Introduction to material and energy balance calculations applied to the solution of chemical processing and corrosion engineering problems.

4250:294 Design Project 2 (1-2 Credits)
Prerequisite: Sophomore standing. Individual design project in Corrosion Engineering that is supervised by a faculty member.

4250:300 Fundamentals of Aqueous Corrosion (3 Credits)
Prerequisites: 4200:225 and [4200:305 or 4600:380] and admission to tan engineering major within the College of Engineering and Polymer Science. Corequisite: 250:301. Fundamentals of aqueous corrosion will cover corrosion tendencies, processes and rates at low temperature. An in-depth understanding of the aqueous corrosion mechanisms, materials performance, and the effects of stress will be covered.

4250:301 Aqueous Corrosion Lab I (1 Credit)
Prerequisites: 3150:154 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: 4250:300. Laboratory exercises will reinforce the fundamentals of aqueous corrosion.
4250:305 Aqueous Corrosion Prevention (3 Credits)
Prerequisites: 3150:263, 4250:300 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisites: 4250:306, 4300:202 and 4400:307. This course presents a functional approach to controlling and preventing aqueous corrosion based upon engineering methodologies to proper materials selection, organic coatings, chemical inhibitors, and electrochemical protection. Applications in specific industries will be covered.

4250:306 Aqueous Corrosion Lab II (1 Credit)
Prerequisites: 4250:301 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: 4250:305. Laboratory exercises will reinforce the fundamentals of aqueous corrosion.

4250:310 Fundamentals of Dry Corrosion (3 Credits)
Prerequisites: 4250:300 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: 4250:311. Fundamentals of dry/hot corrosion will cover corrosion tendencies, processes and rates at high temperature. An in-depth understanding of the high temperature corrosion mechanisms, materials performance, and the effects of stress will be covered.

4250:311 High Temperature Corrosion Lab (1 Credit)
Prerequisites: 4250:306 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: 4250:310. Laboratory exercises will reinforce the fundamentals of high temperature corrosion.

4250:340 Corrosion Prevention (Dry) (3 Credits)
Prerequisite: 4250:305. Corequisite: 4250:310, 4600:380. This course presents a functional approach to controlling and preventing dry corrosion based upon engineering methodologies to proper materials selection, inorganic coatings, and passivation. Applications in specific industries will be covered.

4250:394 Design Project 3 (1-3 Credits)
Prerequisite: Junior standing. Individual design project in Corrosion Engineering that is supervised by a faculty member.

4250:440 Corrosion Engineering Design I (3 Credits)
Prerequisites: 4250:305 and admission to an engineering major within the College of Engineering and Polymer Science. This course applies the lessons learned in corrosion prevention and laboratory courses to corrosion case studies. Solutions to existing corrosion problems will be developed based on the analysis of test data.

4250:441 Corrosion Engineering Design II (3 Credits)
Prerequisites: 4250:440 and admission to an engineering major within the College of Engineering and Polymer Science. This course focuses on understanding the financial, political, social and health implications of corrosion, corrosion mitigation, and corrosion prevention. Solutions to existing corrosion problems will be developed based on economic, political, social, and health issues. The course will also cover methodologies for preserving assets and reducing operation costs.

4250:450 Engineering Principles of Corrosion (3 Credits)
Prerequisite: Junior or greater standing or permission. Engineering principles for understanding corrosion and corrosion mitigation methods. Case studies of corrosion management to reliability and reduce corrosion. Multidisciplinary engineering enrollment encouraged.

4250:494 Design Project 4 (1-3 Credits)
Prerequisite: Senior Standing. Individual design project in Corrosion Engineering that is supervised by a faculty member.