CORROSION ENGINEERING (CORE)

CORE:101 Tools for Corrosion Engineering (2 Credits)
Corequisites: MATH 149 and CHEE 110. Introduction to corrosion engineering. Basic concepts of engineering practice. Introduction to professional level software needed for later studies. (Formerly 4250:101)

CORE:105 Corrosion Engineering Computations (2 Credits)
Prerequisite: CHEE 101 or CORE 101. Corequisite: CHEM 153. Structure, processing and properties of metals, ceramics, and polymers. (Formerly 4250:105)

CORE:194 Design Project 1 (1 Credit)
Prerequisite: Permission. Individual design project in Corrosion Engineering that is supervised by a faculty member. (Formerly 4250:194)

CORE:200 Material and Energy Balances for Corrosion Engineers (4 Credits)
Prerequisites: [CHEE 121 or CORE 105], CHEM 151 and MATH 221. Introduction to material and energy balance calculations applied to the solution of chemical processing and corrosion engineering problems. (Formerly 4250:200)

CORE:294 Design Project 2 (1-2 Credits)
Prerequisite: Sophomore standing. Individual design project in Corrosion Engineering that is supervised by a faculty member. (Formerly 4250:294)

CORE:300 Fundamentals of Aqueous Corrosion (3 Credits)
Prerequisites: CHEE 220 and [CHEE 305 or MECE 380] and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: CORE 301. Fundamentals of aqueous corrosion will cover corrosion tendencies, processes and rates at low temperature. An in-depth understanding of the aqueous corrosion mechanisms, materials performance, and the effects of stress will be covered. (Formerly 4250:300)

CORE:301 Aqueous Corrosion Lab I (1 Credit)
Prerequisites: CHEM 154 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: CORE 300. Laboratory exercises will reinforce the fundamentals of aqueous corrosion. (Formerly 4250:301)

CORE:305 Aqueous Corrosion Prevention (3 Credits)
Prerequisites: CHEM 263, CORE 300 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisites: CORE 306, CIVE 202 and ELEN 307. This course presents a functional approach to controlling and preventing aqueous corrosion based upon engineering methodologies to proper materials selection, organic coatings, chemical inhibitors, and electrochemical protection. Applications in specific industries will be covered. (Formerly 4250:305)

CORE:306 Aqueous Corrosion Lab II (1 Credit)
Prerequisites: CORE 301 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: CORE 305. Laboratory exercises will reinforce the fundamentals of aqueous corrosion. (Formerly 4250:306)

CORE:310 Fundamentals of Dry Corrosion (3 Credits)
Prerequisites: CORE 300 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: CORE 311. Fundamentals of dry/hot corrosion will cover corrosion tendencies, processes and rates at high temperature. An in-depth understanding of the high temperature corrosion mechanisms, materials performance, and the effects of stress will be covered. (Formerly 4250:310)

CORE:311 High Temperature Corrosion Lab (1 Credit)
Prerequisites: CORE 306 and admission to an engineering major within the College of Engineering and Polymer Science. Corequisite: CORE 310. Laboratory exercises will reinforce the fundamentals of high temperature corrosion. (Formerly 4250:311)

CORE:340 Corrosion Prevention (Dry) (3 Credits)
Prerequisite: CORE 305. Corequisite: CORE 310, MECE 380. This course presents a functional approach to controlling and preventing dry corrosion based upon engineering methodologies to proper materials selection, inorganic coatings, and passivation. Applications in specific industries will be covered. (Formerly 4250:340)

CORE:394 Design Project 3 (1-3 Credits)
Prerequisite: Junior standing. Individual design project in Corrosion Engineering that is supervised by a faculty member. (Formerly 4250:394)

CORE:440 Corrosion Engineering Design I (3 Credits)
Prerequisites: CORE 305 and admission to an engineering major within the College of Engineering and Polymer Science. This course applies the lessons learned in corrosion prevention and laboratory courses to corrosion case studies. Solutions to existing corrosion problems will be developed based on the analysis of test data. (Formerly 4250:440)

CORE:441 Corrosion Engineering Design II (3 Credits)
Prerequisites: CORE 440 and admission to an engineering major within the College of Engineering and Polymer Science. This course focuses on understanding the financial, political, social and health implications of corrosion, corrosion mitigation, and corrosion prevention. Solutions to existing corrosion problems will be developed based on economic, political, social, and health issues. The course will also cover methodologies for preserving assets and reducing operation costs. (Formerly 4250:441)

CORE:450 Engineering Principles of Corrosion (3 Credits)
Prerequisite: Junior or greater standing or permission. Engineering principles for understanding corrosion and corrosion mitigation methods. Case studies of corrosion management to reliability and reduce corrosion. Multidisciplinary engineering enrollment encouraged. (Formerly 4250:450)

CORE:494 Design Project 4 (1-3 Credits)
Prerequisite: Senior Standing. Individual design project in Corrosion Engineering that is supervised by a faculty member. (Formerly 4250:494)

CORE:496 Special Topics in Corrosion Engineering (1-3 Credits)
Prerequisite: Permission. (May be repeated for a total of six credits). Topics selected from new and developing areas of corrosion engineering. (Formerly 4250:496)

CORE:497 Honors Project (1-3 Credits)
Prerequisites: Senior standing in Honors College or permission. Individual research or design project in Corrosion Engineering that is supervised by a faculty member. Conducted in accordance with the Honors College requirements. (Formerly 4250:497)